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Abstract: During a pan‒Canadian tick‒host study, the authors detected 
the spirochetal bacterium Borrelia burgdorferi sensu lato, which causes 
Lyme disease, in ticks from a raptor. Lyme disease is one of a number of 
zoonotic, tick‒borne diseases causing morbidity and mortality worldwide. 
Larvae of the avian coastal tick, Ixodes auritulus, were collected by wildlife 
rehabilitators from a Cooper’s hawk, Accipter cooperii, on Vancouver Island, 
British Columbia. Using PCR [polymerase chain reaction] amplification 
of the linear plasmid ospA gene of B. burgdorferi, 4 (18%) of 22 larvae were 
positive. Since these engorged I. auritulus larvae had not had a previous 
blood meal and B. burgdorferi is rarely transmitted from infected female 
ticks to their progeny, authors propose that Cooper’s hawks are reservoir‒
competent hosts of B. burgdorferi. Authors’ tick‒host discovery provides the 
first report of bird‒feeding ticks on a Cooper’s hawk, and exhibits the pre-
mier record of B. burgdorferi‒positive ticks on a raptor. Not only are passer-
ine (perching) and gallinaceous (chicken‒like) birds included in the wide 
dispersal of Lyme disease vector ticks, raptors also now are implicated in 
the dissemination of B. burgdorferi‒infected ticks. Although I. auritulus does 
not bite humans, this tick species plays an integral role in the four‒tick 
enzootic cycle of B. burgdorferi along the West Coast of America. In essence, 
raptors and I. auritulus ticks may help to amplify this infectious agent in 
nature, and increase the likelihood of people contracting Lyme Disease, 
especially in coastal areas.
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INTRODUCTION
A diversity of wild birds act as avian hosts of blood–
sucking, hardbodied Ixodes species ticks (Ixodida: 
Ixodidae). Most commonly, ticks are reported on pas-
serines (Order: Passeriformes), which also are known 
as perching or songbirds, and some of these ticks are 
infected with Borrelia burgdorferi sensu lato (hereafter 
B. burgdorferi), the spirochetal bacterium that causes 
Lyme disease (Burgdorfer, Barbar, et al  1982). This 
tick‒borne spirochetosis can have a multitude of 
clinical symptoms, including cardiac, cutaneous, endo-
crine, gastrointestinal, genitourinary, musculoskeletal, 
neurologic, cognitive, and neuropsychiatric (Maloney 
2009; Savely 2010; Bransfield, Wulfman, et al 2008). 
If left untreated or inadequately treated, diverse 
forms (Miklossy, Kasas, et al 2008; Sapi, MacDonald, 
et al 2008) of B.burgdorferi can sequester and persist 
in immunologically deprived and deep‒seated sites 
(Straubinger 2000; Barthold, Hodzic,  et al 2010; 

MacDonald 2013; Sapi, Bastian, et al 2012; Embers, 
Barthold, et al 2012; MacDonald 2006; Liegner, 
Duray, et al 1997; Stricker and Johnson 2013); namely, 
ligaments and tendons (Häupl, Hahn, et al 1993; 
Müller 2012), muscle (Frey, Jaulhac,  et al 1998), brain 
(MacDonald 2007; Miklossy 2011; Oksi, Kalimo, et al 
1996), bone (Fein and Tilton 1997; Oksi, Mertsola, 
et al 1994), eyes (Preac‒Mursic, Pfister, et al 1993), 
glial and neuronal cells (Ramesh, Borda, Dufour, 
et al 2008; Ramesh, Santana‒Gould, et al 2013), 
fibroblasts/scar tissue (Klempner, Noring, et al 1993). 
There are at least 100 different B. burgdorferi genotypes 
worldwide (Franke, Hildebrandt and Dorn 2013; 
Casjens, Fraser‒Ligget, et al 2011; Crowder, Matthews, 
et al 2010; Mathers, Smith, et al 2011), and patients 
often are negative using the 2‒tier Lyme disease serol-
ogy test despite having Lyme disease (Kaiser 2000; 
Sperling, Middelveen, et al 2012; Clark, Leydet, et al 
2013).

This tick‒borne microorganism cycles in nature 
between certain tick species and a wide range of 
vertebrate hosts, and has been reported from five 
continents, including subantarctic islands and 
Australia (Mayne 2011; Masyne 2012). In the coastal 
area of southeastern Australia, the avian coastal tick, 
Ixodes auritulus (Ixodida: Ixodidae), and the paralysis 
tick, Ixodes holycyclus, which are both Lyme disease 
vector ticks, aid in the spread of Lyme disease. In 
Canada, several different wild bird species, which are 
short‒ and long‒distance carriers, widely disperse 
Lyme disease vector ticks nationwide (Scott, Fernando, 
et al 2001; Morshed, Scott, et al 2005; Scott, Lee, et 
al 2010; Scott, Anderson, et al 2012). In far‒western 
Canada, Gregson (1956) reported I. auritulus, on 
a bald eagle, Haliaeetus leucocephalus and a Rocky 
Mountain wood tick, Dermacentor andersoni, on a 
hawk. Although raptors (Falconiformes: Accipiteridae) 
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were examined recently in southern Ontario for 
attached ticks, none was noted (Ogden, Lindsay, et 
al 2008). Cooper’s Hawks, which have ample oppor-
tunity to encounter host‒seeking ticks, have a conti-
nent‒wide range and transcontinental distribution 
across the central temperate region of North America, 
including Vancouver Island, British Columbia (BC) 
(Peterson 2010). The sheep tick, Ixodes ricinus, and the 
tiaga tick, Ixodes persulcatus, have been reported on 
several species of the hawks in Eurasia (Anderson and 
Magnarelli 1993).

Ticks can transmit more kinds of pathogens than 
any other group of ectoparasites worldwide affecting 
people, livestock, wildlife, and domestic animals 
(Nicholson, Sonenshine, et al 2009). In Canada, 
at least 6 of 23 known Ixodes species collected from 
vertebrates (avian, mammalian, reptilian) exhibit 
some degree of vector competence for B. burgdorferi. 
The principal vectors to humans are the western 
blacklegged tick, Ixodes pacificus, in British Columbia 
and Alberta and, east of the Rockies, the blacklegged 
tick, Ixodes scapularis, parasitizes a wide range of 
vertebrate hosts. Similarly, Ixodes dentatus and Ixodes 
spinipalpis (Eisen and Lane 2002) are confirmed as 
competent vectors of B. burgdorferi. Additionally, 
Ixodes affinis, which is occasionally transported from 
the southeastern USA and Mexico by northward 
migrating passerines in the spring, is an extralimital 
tick that has vector competency for B. burgdorferi 
(Dolan, Lacombe, et al 2000; Oliver, Lin, et al 
2003). Moreover, several bird‒tick‒Borrelia studies 
underpin the fact that ground‒frequenting passerines 
transport Lyme disease vector ticks northward during 
long‒distance flight (Scott, Fernando, et al 2001; 
Morshed, Scott, et al 2005; Scott, Lee, et al 2010; 
Scott, Anderson, et al 2012; Ander and Magnarelli 
1984; Reed, Meese, et al 2003; Hamer, Goldberg, et 
al 2012). Not only do migratory songbirds carry ticks 
northward during spring migration, these avian hosts 
also transport them southward during fall migration 
(Morshed, Scott, et al 2005; Durden, Oliver, et al 
2001). Along the West Coast, I. auritulus ticks, which 
are ectoparasites of passerines and galliforms, play 
a role in the natural enzootic cycle of B. burgdorferi 
(Scott, Anderson, et al 2012. Using culturing and 
PCR‒testing, early studies in the southern region of 
Vancouver Island, BC, detected B. burgdorferi in Ixodes 
angustus and I. pacificus and established its presence in 
this area (Banerjee, Banerjee, et al 1994). The aim of 
authors’ tick‒host‒Borrelia study was to explore any 
new environmental associations that could contribute 
to an increase in Lyme disease in an area.

MATERIALS AND METHODS
Tick Collection. Ticks were detached primarily 
from the head and neck using fine‒pointed tweezers 
by wildlife rehabilitators. One to three ticks were 
placed in 2‒mL polypropylene micro tubes, and four 
or more ticks were placed in clear 4‒dram (12 mL) 
polystyrene vials with white polyethylene caps vented 
with tulle netting. These containers were placed in a 
ziplock bag with a slightly moistened section of paper 
towel. Dead or badly damaged ticks were put directly 
in 2‒mL micro tubes containing 95 percent ethyl 
alcohol. Using a bubble‒pack envelope, ticks were 
mailed promptly to the lab (JDS) for identification. 
An Olympus® (Olympus America, Center Valley, 
PA) stereoscopic microscope SZX16 (objective, 1x; 
eyepieces, 10x), which provided zoom observation 
magnification of 7x‒115x, was used to view the follow-
ing tick characteristics: 1) alive or dead, 2) unfed, par-
tially engorged, fully engorged, 3) developmental life 
stage, and 4) tick species (Durden and Keirans 1996; 
Keirans and Cliffore 1978; Kleinjan and Lane 2008). 
Partially and fully engorged ticks were kept alive and 
allowed to molt to the next developmental life stage. 
After background information was noted, ticks were 
sent by overnight courier to the culturing and PCR 
(polymerase chain reaction) amplification research 
laboratory (JFA).

Spirochete Detection. Each unfed and engorged 
tick was tested for the presence of B. burgdorferi using 
PCR by methods as previously described (Persing, 
Telford, Spielman, et al 1990; Persing, Telford, Rys, et 
al 1990). Briefly, ticks were ground with a large paper 
clip in a 0.6‒mL microcentrifuge tube containing 25 
μL to 35 μL K Buffer, which consisted of: 18 mL ster-
ile irrigation water, 2 mL 10X Base Buffer, 0.09 mL 
NP 40 (Sigma, lot #122K00401), and 0.09 mL Tween 
20 (Sigma lot #033K0109). A different paper clip 
was used for each tick. Each tick was boiled at 94˚C 
for 10 minutes. DNA was extracted from engorged 
ticks using instructions in the QIAamp DNA 
Mini Kit (250) (QIAGEN, Valencia, CA). Primers 
were the linear plasmid ospA gene target: ospA2, 
5ʹ‒GTTTTGTAATTTCAACTGCTGACC‒3ʹ; ospA4, 
5ʹ‒CTGCAGCTTGGAATTCAGGCACTTC‒3ʹ. PCR 
amplification was performed using a PerkinElmer® 
(Waltham, MA) thermal cycler set to conduct dena-
turation at 94˚C for 45 seconds, annealing at 45˚C 
for 45 seconds, and elongation at 72˚C for 1 minute, 
for a total of 45 cycles. Appropriate negative and posi-
tive controls were used. Amplification products were 
analyzed by electrophoresis, stained with ethidium 
bromide, and examined under UV illumination as 
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described previously (Persing, Telford, Spielman, et al 
1990; Persing, Telford, Rys, et al 1990). Amplification 
products were transferred to a nylon membrane by 
Southern blot. The membrane was then hybridized 
overnight with 32P using the probe ospA3, 5ʹ‒GCC
ATTTGAGTCGTATTGTTGTACTG‒3ʹ. The mem-
brane then was washed, and Kodak® X‒OMAT® AR 
film (Eastman Kodak Co., Rodchester, NY) was placed 
over the membrane for four hours. Infected ticks were 
detected with the 32P probe. Attempted culturing of 
spirochetes from the larval ticks from the Cooper’s 
hawk was not done because they were all dead upon 
arrival for tick identification.

RESULTS
Tick collection. A total of 22 engorged I. auritulus 
larvae were collected from the edge of the lower right 
eyelid of a juvenile male Cooper’s hawk, Accipiter coo-
perii, which was examined on 29 October 2012, after 
it was recovered at Oak Bay, Vancouver Island, BC, 
Canada. This tick collection is the first report of ticks 
on a Cooper’s hawk, and constitutes a new tick‒host 
record. 

Spirochete Detection. Four (18%) of 22 I. auritu-
lus larvae were infected with B. burgdorferi. Based on 
an extensive literature search, authors provide the first 
report of B. burgdorferi‒positive ticks on a raptor. Of 
the 4 positive ticks, 2 of 17 (12%) partially engorged 
and 2 of 5 (40%) fully engorged larvae were positive 
for B. burgdorferi. The Cooper’s hawk was released on 
5 November 2012, and blood was not drawn from this 
raptorial host; thus, authors could not verify spiroche-
temia in this host bird.

Discussion. This bird parasitism provides the first 
report of ticks on a Cooper’s hawk, and announces 
new‒found evidence of B. burgdorferi in ticks col-
lected from a raptor. The results of this study provide 
credible evidence that raptors act as reservoirs of B. 
burgdorferi and add to the increased role of wild birds 
as dispersal agents of this zoonotic pathogen. Cooper’s 
hawks prey primarily on small‒ and mid‒sized birds, 
but also supplement their diet with small mammals. 
As they consume their capture, they frequently make 
contact with low‒lying vegetation where ticks are 
questing. In this particular case, the Cooper’s hawk 
was most likely at a site where a gravid I. auritulus 
female laid her eggs in the spring. During the summer, 
these eggs hatched to larvae, and were ready for active 
host‒seeking in the late summer and fall. Since the 
attached larvae had a similar amount of engorgement, 
the Cooper’s hawk must have encountered a cluster of 

larvae from recently hatched eggs. When the I. auritulus 
female lays her eggs, and dies, the fat pellet in the pos-
terior end of the idiosoma (similar to abdomen) of the 
carcass provides a source of energy‒laden nutrients, 
and creates a proclivity to attract birds and rodents 
foraging for food Stafford and Kitron 2002).

Now, the question becomes, how did the four 
I. auritulus larvae acquire B. burgdorferi infection? 
Connecticut researchers Anderson, Johnson, 
Magnarelli, et al (1986) provided the first isolation 
of B. burgdorferi from a passerine (veery, Catharus 
fuscencens), and showed that certain wild birds exhibit 
reservoir competency. Since the I. auritulus larvae had 
not had a previous blood meal, and transovarial trans-
mission (female to eggs) of B. burgdorferi is not appar-
ent during prior bird‒tick studies (Morshed, Scott, 
et al 2005; Scott, Lee, et al 2010; Scott, Anderson, et 
al 2012), authors extrapolate that spirochetes of this 
zoonosis were transmitted during engorgement on the 
Cooper’s hawk. Authors’ findings that 2 of 17 (12%) 
of the partially engorged and 2 of 5 (40%) of the fully 
engorged larvae removed from the hawk were positive 
for B. burgdorferi may be significant in this respect. 
Although the numbers are small, tick larvae that had 
imbibed a larger volume of host blood were more 
likely to be B. burgdorferi‒positive, which provides cir-
cumstantial support for authors’ suggestion that these 
ticks imbibed spirochetes with their bloodmeal from 
the hawk. If transovarial transmission of B. burgdorferi 
was the only source, then the infection rate of the par-
tially engorged and the fully engorged larvae would be 
approximately the same. However, in this ectoparasite 
study, they are significantly different.

For comparison, researchers (Rollend, Fish, et al 
2013) presented evidence‒based data to indicate that 
Borrelia miyamotoi, which is also pathogenic to humans 
(Platonov, Karan, et al 2011), is transmitted transovari-
ally by I. scapularis females; however, B. burgdorferi was 
not transmitted or detected in unfed larvae derived 
from egg clutches of wild‒caught I. scapularis females. 
For authors’ study, the host Cooper’s hawk was most 
likely spirochetemic, and the host‒seeking larvae 
acquired B. burgdorferi during engorgement. Further 
studies are necessary to confirm whether transovarial 
transmission occurs with I. auritulus.

As birds of prey, raptors are continuously consum-
ing small mammals and wild birds, which presumably 
are infected with B. burgdorferi and, after eating them, 
may become infected. Not only do Cooper’s hawks 
have frequent opportunities to encounter B. burgdor-
feri‒infected, ectoparasitic ticks, they could feasibly 
become orally infected. Subsequently, these spiroche-
temic avian hosts could infect unfed, spirochete‒free 
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larvae. For comparison, 22 days post‒inoculation, 
spirochetes were isolated from cloacal material and 
kidneys from mallard ducks, Anas platyrhynchos platy-
rhynchos, that had orally been infected with B. burgdor-
feri (Burgess 1989). Moreover, Schwarzoza et al (2006) 
similarly detected B. burgdorferi in the throat and 
cloacal cells from birds migrating through Slovakia. 
These findings show that certain orally‒infected birds 
can develop spirochetemia and shed B. burgdorferi in 
their droppings. Based on PCR amplification results, 
authors suggest that Cooper’s hawks are reservoir‒
competent hosts and act as dispersal vehicles of B. 
burgdorferi to new environmental foci. Along Canada’s 
Pacific coast, this raptorial host presumably plays a 
notable role in the four–tick enzootic cycle of B. burg-
dorferi, which consists of four vector‒competent ticks 
(I. auritulus, I. angustus, I. pacificus, and I. spinipalpis). 
The bird parasitism in this study not only includes I. 
auritulus on a Cooper’s hawk, it implicates raptors as 
reservoir hosts in the four–tick enzootic cycle of B. 
burgdorferi in this bioregion and expands the number 
of bird species in Lyme disease dissemination.
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